skip to main content


Search for: All records

Creators/Authors contains: "Diem, Jeremy E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Urbanization introduces new and alters the existing hydrological processes. Projecting the direction and magnitude of change of evapotranspiration (ET), often a large existing process, in humid subtropical climates is difficult due to the lack of land‐cover specific estimates of ET. This research aims to improve our fundamental understanding of ET in urban areas by focusing on ET specific to land‐cover classes of the National Land Cover Database (NLCD). Using multiple physically based models along with ET from reference watersheds, this study estimates ET—within the Atlanta, GA, USA region—for NLCD classes. ET also is estimated for urban watersheds—both in the Atlanta region and in areas with humid subtropical climate types—for which published ET estimates exist. There are major differences in land cover among the four developed classes: high‐intensity developed land is 92% impervious surfaces, while open‐space developed land—the least intensively developed land—is only 8% impervious surfaces. Consequently, open‐space developed land has an ET total that is over four times that of high‐intensity developed land. Due to a high percentage of impervious cover and substantial evaporation of water from impervious surfaces throughout the year, there is little intra‐annual variation in ET for the high‐intensity developed class. The land‐cover ET totals aggregate to reliable estimates for urban watersheds. The largest source of uncertainty for ET estimates in urban areas is likely the evaporation magnitude associated with impervious surfaces; therefore, more work is needed in determining those magnitudes for humid subtropical climates.

     
    more » « less
  2. Abstract

    Despite lower‐troposphere wind flow being a major control of rainfall in equatorial Africa, no studies have systematically compared winds from multiple reanalyses nor have attempted to validate the wind directions. Therefore, the objectives of this study are to assess differences in wind directions among multiple reanalysis products and compare reanalysis winds with wind measurements made at weather stations. The study region is western Uganda, part of the transition region between western equatorial Africa (WEA) and eastern equatorial Africa (EEA). Four‐times daily (i.e., 0Z, 6Z, 12Z and 18Z) 10‐m and 850‐hPa winds from 1980 to 2021 are obtained for ECMWF Reanalysis v5 (ERA5), Japan Meteorological Agency 55‐year Reanalysis (JRA55), Modern‐Era Retrospective analysis for Research and Applications Version 2 (MERRA2), NCEP‐NCAR Reanalysis 1 (R1) and NCEP/DOE Reanalysis II (R2). Wind measurements at 10 m and 850 hPa are obtained for six weather stations and two weather stations, respectively. Agreements between pairs of products and between measurements and reanalysis estimates are determined. In addition, differences between reanalyses and measurements with respect to wind vectors are calculated. Results show that the majority of reanalyses have western Uganda within the prevailing easterly flow over EEA and east of the prevailing westerly flow over WEA. Ten‐meter wind measurements also show easterly flow being prevalent throughout western Uganda. R1 is unique among the products due to a relatively large number of westerly days. However, much of the westerly flow is likely artificial, based on station data. MERRA2 has large easterly biases. JRA55 is much more accurate than the other products at reproducing the intra‐annual frequencies of wind directions. JRA55 and ERA5 are the least biased products based on the magnitudes of difference vectors. Therefore, it is recommended that JRA55 and ERA5 continue to be used in examinations of winds in western Uganda.

     
    more » « less
  3. null (Ed.)
    Abstract Substantial research on the teleconnections between rainfall and sea-surface temperatures (SSTs) has been conducted across equatorial Africa as a whole, but currently no focused examination exists for western Uganda, a rainfall transition zone between eastern equatorial Africa (EEA) and central equatorial Africa (CEA). This study examines correlations between satellite-based rainfall totals in western Uganda and SSTs – and associated indices – across the tropics over 1983-2019. It is found that rainfall throughout western Uganda is teleconnected to SSTs in all tropical oceans, but much more strongly to SSTs in the Indian and Pacific Oceans than the Atlantic Ocean. Increased Indian Ocean SSTs during boreal winter, spring, and autumn and a pattern similar to a positive Indian Ocean Dipole during boreal summer are associated with increased rainfall in western Uganda. The most spatially complex teleconnections in western Uganda occur during September-December, with northwestern Uganda being similar to EEA during this period and southwestern Uganda being similar to CEA. During boreal autumn and winter, northwestern Uganda has increased rainfall associated with SST patterns resembling a positive Indian Ocean Dipole or El Niño. Southwestern Uganda does not have those teleconnections; in fact, increased rainfall there tends to be more associated with La Niña-like SST patterns. Tropical Atlantic Ocean SSTs also appear to influence rainfall in southwestern Uganda in boreal winter as well as in boreal summer. Overall, western Uganda is a heterogeneous region with respect to rainfall-SST teleconnections; therefore, southwestern Uganda and northwestern Uganda require separate analyses and forecasts, especially during boreal autumn and winter. 
    more » « less
  4. Abstract

    Defects in sanitary‐sewer infrastructure enable exchange of large volumes of fluids to and from the environment. The intrusion of rainfall and groundwater into sanitary sewers is called inflow and infiltration (I&I). Though long recognized in the assessment of sewers, the impacts of I&I on streamflow within urban watersheds are unknown. We quantified rainfall‐derived I&I (RDI&I), groundwater infiltration (GI), and total I&I using measured flows within sanitary‐sewer pipes serving four watersheds near Atlanta, Georgia, USA. Flows were monitored in pipes that parallel local stream channels and compared with streamflow measured at nearby gauging sites. Freshwater diverted into the sewer system due to I&I ranged from 24% to 36% of the flow measured within individual pipes. The RDI&I was the smaller component of I&I, ranging from 4.2 to 9.8 mm per year among watersheds. The GI was typically an order of magnitude greater than RDI&I, ranging from 24 to 41 mm per year among watersheds with annual stream discharge of approximately 500 mm. The I&I occurring at specific moments in time commonly represented 0%–20% of the flow measured in the adjacent stream. The enhancement of low flows in streams that could be achievable if I&I were abated ranges from as much as 6%–36% across watersheds. Our discussion presents explanations for the seasonality of I&I and associated impacts on streamflow in urban watersheds, while identifying important sources of remaining uncertainty. Our results support the conclusion that I&I substantially reduces flows in urban streams, especially low flows during dry weather.

     
    more » « less
  5. Long‐term trends in equatorial African rainfall have proven difficult to determine because of a dearth in ground‐measured rainfall data. Multiple, satellite‐based products now provide daily rainfall estimates from 1983 to the present at relatively fine spatial resolutions, but in order to assess trends in rainfall, they must be validated alongside ground‐based measurements. The purpose of this paper is twofold: (a) to assess the accuracy of four rainfall products covering the past several decades in western Uganda; and (b) to ascertain recent, multi‐decadal trends in annual rainfall for the region. The four products are African Rainfall Climatology Version 2 (ARC2), Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks–Climate Data Record (PERSIANN‐CDR), and TAMSAT African Rainfall Climatology And Timeseries (TARCAT). The bias and accuracy of 10‐day, monthly, and seasonal rainfall totals of the four products were assessed using approximately 10 years of data from 10 rain gauges. The homogeneity of the products over multiple time periods was assessed using change‐point analysis. The accuracy of the four products increased with an increase in temporal scale, and CHIRPS was the only product that could be considered sufficiently accurate at estimating seasonal rainfall totals throughout most of the region. TARCAT tended to underestimate totals, and ARC2 and PERSIANN were in general the least accurate products. Only annual rainfall estimates from CHIRPS and TARCAT were significantly correlated with ground‐measured rainfall totals. TARCAT was the most homogeneous product, while ARC2, CHIRPS, and PERSIANN had significant negative change points that caused a drying bias over the 1983–2016 period. After adjusting the satellite‐based rainfall estimates based on the timing and magnitude of the change points, annual rainfall totals derived from all four products indicated that western Uganda experienced significantly increasing rainfall from 1983 to 2016.

     
    more » « less